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Velocity derivatives in turbulence at  large Reynolds numbers exhibit probability 
densities with a large kurtosis. If the value of the kurtosis is about 40, as in many 
measurements of atmospheric turbulence, careful attention to the processing of 
such signals is required in order to obtain an acceptable level of accuracy. Signal- 
to-noise and integration-time limitations make measurements of moments higher 
than the fourth nearly impossible for signals of this kind. 

1. Introduction 
A decade ago, Kolmogorov proposed his ‘third hypothesis’ on the small-scale 

structure of turbulence (Kolmogorov 1962). This theory, later formalized by 
Gurvich & Yaglom (1967), is based on the observed intermittency of the dissipa- 
tion rate in turbulent flows at  large Reynolds numbers; it prompted a great 
amount of experimental research on the probability distribution of turbulent 
velocity derivatives in atmospheric and oceanic turbulence (e.g. Gibson, Stegen 
& Williams 1970; Stewart, Wilson & Burling 1970; Wyngaard & Tennekes 1970; 
Sheih, Tennekes & Lumley 1971). One of the major parameters of interest is the 
kurtosis ( K )  of velocity derivatives; in flows with microscale Reynolds numbers 
(Rh) of the order of 5000 the kurtosis can reach values as high as 40 (Wyngaard & 
Tennekes 1 9 7 0). 

Verification of Kolmogorov’s third hypothesis requires accurate measurements 
of K and of the higher moments of the probability density of velocity derivatives. 
It is the purpose of this paper to show that the present state of the art of data 
acquisition and processing makes the quest for experimental data on the higher 
moments next to impossible. The problem is illustrated in figures 1 and 2. Pigure 1 
is based on atmospheric data obtained during the 1968 Kansas expedition of the 
Air Force Cambridge Research Laboratories (Wyngaard & Cot6 1971); figure 2 
is based on laboratory data obtained in 1966 (Wyngaard & Tennekes 1970). 
The non-dimensionalization employed is as follows. The velocity-derivative 
signal &/at is called s and has zero mean and a standard deviation g .  The non- 
dimensional signal x is equal t o  s i a  and the normalized probability density - 
/3* (2) = cr/3(s) satisfies 

P,(x)dx = 1.  
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FIGURE 1. Distributions of the second, fourth, sixth and eighth moments of an experi- 
mentally obtained probability distribution with K 2 40. Data from the 1968 Kansas 
expedition of AFCRL. 
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FIGURE 2. Distributions of the second, fourth, sixth and eighth moments of a 
probability distribution with K g 6 obtained in the laboratory. 

Since we are mainly interested in even moments, it is convenient to define the 

with 0 < x < 00. Thenormalizedmoment of order 2% (n being an integer) then may 
be written as 

Mzrr = 1 O0 x2np* dx 

symmetric Part ofP* by f i  EE g{p*(x) +P*( -x)}, (2) 

- W  

(3) 
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FIGURE 3. The probability density (symmetric part) of velocity derivatives measured in 
Kansas ( K  E 40, R ,  E 8000). - , curve fit according to (5) ; - - -, probability dis- 
tribution with K = 40 derived from a log-normal distribution of the squared signal. 

I n  particular, the kurtosis K is given by 

K = M , = 2 / ~ x 4 B B , d x .  (4) 

Figures 1 and 2 contain plots of the integrands x~~ p* as functions of x for 
2n = 2 (the distribution of the variance), 2n = 4 (the distribution of the kurtosis), 
2n = 6 and 2n = 8. For the atmospheric data (figure 1) K = 40 and R, = 8000 
approximately; for the laboratory data (figure 2)  K = 6 and R, = 200 (Wyngaard 
& Tennekes 1970). It is evident from figure 1 that, with data available over a 
range of 20~7 on either side of the mean, not even the entire distribution of the 
kurtosis can be covered if K = 40. The situation obviously is worse for the 
distributions of moments beyond the fourth. Figure 2 shows that signals with a 
moderate kurtosis do not require the registration of signal excursions beyond 
x = 8 if no data on moments beyond the fourth are required; indeed, the contrast 
between figures 1 and 2 indicates that the problem of obtaining accurate data 
is much more severe for measurements at high Reynolds numbers. 

The major reason for presenting figures 1 and 2 is to emphasize a crucial, 
though often overlooked, point: data on the moments of a signal cannot be trusted 
if at  the largest values of x measured the corresponding integrands ( x ~ ~ , & )  
behave erratically or if the integrand has not yet decreased to a level at  which the 
area under the curve can be calculated with reasonable accuracy. An example of 
the first problem is the occurrence of spurious data points at large values of x ,  
which may go undetected in data processing; the second problem is almost 
always associated with the finite dynamic range of the instruments employed. 
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FIGURE 4. Extrapolation of figure I to z = 40, based on the 
curve-fitting expression (5). 

The severity of these problems can be appreciated more fully if the probability 
density is extrapolated to larger values of x. Figure 3 shows that the curve 

with a = 7.66 and b = 4-45, fits the atmospheric data ( K  = 40) quite well. By 
extrapolating the curves in figure 1 with the aid of (5), we obtain the results 
presented in figure 4. Evidently, no moments beyond the sixth could be mea- 
sured with any accuracy, even if data were available (and reliable) up to x = 40. 
A similar extrapolation can be made for the laboratory data ( K  = 6); however, 
the atmospheric data ( K  = 40) clearly present a greater challenge, so that the dis- 
cussion will be centred on these data. 

Another extrapolation to larger values of x can be obtained by employing the 
theoretical prediction made by Oboukhov (1962) and by Gurvich & Yaglom 
(1967) that the probability distribution of the dissipation rate should be log- 
normal. The integrands x2np*(2n = 4 , 6 , 8 )  of a probability density with K = 40, 
based on a log-normal distribution of x2, are shown in figure 5. The corresponding 
plot of ,!E?* is given in figure 3; it is seen that a log-normal distribution of x2 does 
not fit the observed distribution of x nearly as well as does the empirical curve- 
fitting expression (5). For example, the observed maximum of ."* is about 1.1 
at x = 7.5, but a log-normal distribution with K = 40 (figure 5) gives a maximum 
of 0.83 at x = 6-3. Also, in figure 4 the maximum of x6 pS is 195 at x = 21, while in 
figure 5 that maximum is 210 at x = 40. Incidentally, the location of the peak of 
the distribution of the 2nth moment is xp = K4(m-1) if the distribution of x2 is 
log-normal, so that the tenth moment, for example, would peak at x = 1600 if 
the distribution of x2 were indeed log-normal with K = 40. 

The poor agreement between figures 4 and 5 shows that predictions based on 
an assumed log-normal distribution of squared velocity derivatives cannot be 

p"*(x) = aexp ( - ~ x O . ~ ) ,  (5) 
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FIGURE 5. Distributions of the fourth, sixth and eighth moments of a probability 
distribution with K = 40 based on a log-normal distribution of 2 2 .  

trusted at this stage. In  this context it should be noted that Orszag (1970) has 
shown that the moment problem of turbulence is indeterminate if the distribu- 
tion of the dissipation rate is log-normal. Therefore, we assume that p”* is unknown 
for x > 20, so that we cannot give analytical expressions for the maximum value 
of x that needs to be covered in order to obtain accurate measurements of any 
desired moment of a probability distribution of a velocity derivative with a 
certain value of K .  For the time being, the accuracy of experimental results has 
to be checked aposteriori, by constructing plots such as the ones given in figures 1 
and 2. This caution, however, is not always exercised in the literature: data on 
high order moments are often presented without substantiating evidence in the 
form of moment distributions. It cannot be stressed too strongly that such un- 
supported data should not be trusted and should not be used to check theoretical 
predictions. 

2. Dynamic range 
In the Kansas experiment (Wyngaard & Cot6 1971), hot-wire signals were 

differentiated and low-pass filtered in one operation, using a four-pole Butter- 
worth filter made from operational amplifiers, and recorded on a FM tape re- 
corder. The derivative signal was subsequently played back into an analog- 
digital converter; the probability distribution was obtained by data processing 
on a digital computer. This arrangement is typical of current practice in hot-wire 
anemometry (see, for example, Sheih et al. 1971; Pierce 1972). If the derivative 
signal has a large kurtosis, signal excursions large compared with the standard 
deviation r~ have to be handled faithfully by the processing equipment. We 
wish to  establish the conditions that made such measurements possible. 

7 F L M  55 
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The maximum value of x we need to record depends on the order of the highest 
moment we wish to determine and on the kurtosis of the signal; it will be denoted 

zmax = m. (6) 
by 

Referring to  figure 1, we see that m needs to  be a t  least 20 in order to obtain a 
reasonably accurate value of the kurtosis of velocity derivatives in atmospheric 
turbulence. Also, figure 4 suggests that we would probably need m = 50 to  deter- 
mine the sixth moment. Yet higher moments require even larger values of m; it is 
tempting to use the curve-fitting expression (5) for ‘theoretical ’ predictions of the 
value of m needed to determine any desired moment to a specified accuracy. 
Our attempts a t  such predictions did not produce any simple estimates; also, it 
is highly uncertain that experimental results would follow curves like (5) up to 
extreme values of m. 

The need to cover large values of m forces one to compromise on the conven- 
tional signal-to-noise ratio of the recording equipment, so that in this kind of 
application tape-recorder noise tends to dominate other sources of noise. If the 
r.m.s. noise level is denoted by e, the r.m.s. signal-to-noise ratio is given by 

Q = 0.16, ( 7 )  

where Q stands for the r.m.s. quality of the signal. For the Kansas data, Q = 10 
approximately, which permitted the variance gz to  be measured with an accu- 
racy of 1 yo. 

The analog tape recorder should be able to record signal excursions up to mg 
without ‘ clipping’, ‘folding’ or other nonlinear distortions. If the dynamic 
half-range D of the recorder is used to capacity, we obtain 

D = mcrle. 

D = mQ. 
Substitution of (7) into (8) yields 

This relation demonstrates one of the major trade-offs involved in measuring 
velocity derivatives a t  large Reynolds numbers. The tape recorder employed in 
the Kansas expedition (an Ampex FR-1300)) though it had a nominal dynamic 
half-range of 45db (D = 180), was in fact capable of 51db (D = 350) without 
appreciable distortion (this was verified by recording sine waves of different 
amplitudes). With Q = 10 and D = 350 the maximum signal excursion that could 
be recorded thus was 35 standard deviations (m = 35). The number of signal 
excursions beyond x = 20 observed during several hours of recording time, 
however, was so small that no data beyond x = 20 were plotted for lack of statis- 
tical stability. 

Some tape recorders do not handle overloads as well as the one used in the 
Kansas expedition; a more common set of numbers would be D = 100 (40db)) 
m = 10, Q = lO(see,forexample,Sheihetal. 1971).Ifonehastorecordona40db 
tape recorder, and if one wants to measure signals with a kurtosis of 40 (figure 1)) 
a reasonable compromise would be to choose m = 20 and Q = 5; this would cause 
a 4 yo error in the determination of the variance and probably some 20 yo error 
in the determination of K .  
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It would be advantageous to bypass the tape recorder if the experimental 
arrangements permitted, because the dynamic range of the analog differentiation 
circuitry is likely to be larger than that of most tape recorders. For the Kansas 
experiment an improvement by a factor of almost two would have resulted: at  
the output of the differentiator D g 620, with Q 2 18 andm 2 35 (the maximum 
signal excursion of the differentiator output was matched to that of the tape-re- 
corder input). With somewhat smaller gain, m 2 60 at Q z 10 would have been 
possible, bringing a determination of the sixth moment within reach (see figure 4), 
were it not for prohibitively long integration times (see 3 4). 

For signals with a lower kurtosis the situation is not nearly so desperate. In- 
spection of the laboratory data in figure 2 ( K  = 6) suggests that an ordinary 40 db 
tape recorder (D = 100)) used in such a way that m = 10 and Q = 10, allows 
quite accurate measurements of the kurtosis distribution x4p*; with m = 20 
and Q = 5 fair estimates of the sixth and eighth moments can be obtained if 
desired. 

3. Digitizer resolution 
The processing of the turbulence data of the Kansas expedition was performed 

by a digital computer; the computer processing method has now become stand- 
ard. The analog signal from the tape recorder is digitized by a converter with 2R 
registers (R registers on either side of s = 0). If the converter is used to capacity, 
and if the register ‘window’ width is As = aAx (recall that s l a  = x is the normal- 
ized signal), we obtain 

ma = RAs = RvAx, (10) 

so that Ax = mlR. (11) 

Again, there is a trade-off problem: as m is increased for a given value of R, the 
digitizing increment Ax may become too large to allow adequate resolution of the 
variance distribution x2p* (see figures 1 and 2). In the processing of the Kansas 
data this was no problem because a 14-bit digitizer was used (R = 8192) and was 
conservatively set at m = 82 (well beyond the value m = 35 required by the 
tape-recorder performance), so that Ax = 0.01 approximately. 

This issue can be defined more precisely by considering upper and lower bounds 
on the digitizing increment Ax. On the one hand, Ax needs to be small enough to 
allow good resolution of x2&. Referring again to figure 1, we find that 

AX < 0.2 (12) 

would be adequate for signals with K = 40 (for the laboratory data of figure 2, 
a smaller window width, perhaps Ax 6 0.1, would be desirable). 

On the other hand, the window width does not need to be so small that the noise 
in the analog signal causes counts to occur in adjacent registers. If we require 
(rather arbitrarily) that an instantaneous noise level equal to the r.m.s. value E 

should not cause a shift to the next register (errors larger than E will still do so, 
however), we obtain 

As 2 2e, (13) 
7-2 
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that is, Ax 2 2/Q. 
Combining ( 12) and (14), we find 
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2/Q < AX 6 0.2, (15) 

and note again that the upper bound given here is a crude estimate for signals 
with K = 40 and that it should decrease with decreasing K.  

Equation (15) states that, for signals with K = 40, the digitizer is used opti- 
mally if we choose Ax  = 0.2 and Q = 10. For the Kansas data, Q was indeed 
approximately equal to 10, but Ax = 0.01, as we saw earlier. For this reason the 
counts in 12 adjacent windows were averaged, so that the effective window 
width was 12Ax = 0.12, which is fairly close to the (rather arbitrary) optimum 
derived from (15). Again, it is evident that Q has to be reasonably large in order 
to keep the digitizing increment small enough: (15) specifies not only an optimum 
value for Ax but also a lower bound on Q. For example, for Q = 5 there would be 
no point in making Ax  smaller than 0.4; however, this would give significant 
resolution errors in xzppS between x = 0 and x = 2 (see figure 1). 

An interesting sidelight is obtained by substituting for Ax in (14) and using (9) 
and (1  1) .  This yields 

which states that the resolution of the digitizer does not need to be better than the 
quality of the tape recorder and that the data-processing system is optimized if 
the dynamic half-range of the tape recorder equals the number of digitizer 
registers. For example, an 8-bit digitizer (2R = 256) can be fully utilized only if 
one has a 48 db tape recorder. Conversely, it is evident that great improvements 
in analog circuitry are necessary before a 14-bit digitizer (R = 8192, correspond- 
ing to 84 db) is tasked to its limits. 

D 2 2R, (16) 

4. Sampling time 
The principal contributions to moments of high order are made at large values 

of x (figures 1 and 2), where the values of /I* are quite small. The time required to 
obtainreliable data ona moment thus increases rapidly as the order of the moment 
increases. If the mean value jj of a signal y whose expected value is E(y)  is deter- 
mined by analog integration over a long period of time, the mean-square relative 
error e2(jj) is (Tennekes & Lumley 1972, 3 6.4) 

where 7 is the integral (time) scale of y and T is the integration time; it is assumed 
that the dynamic range of the instruments is adequate. 

On applying (17)  to the determination of the variance sT = cz and the fourth 
moment 2 = Kc4  of a velocity derivative s with standard deviation (T, we obtain 

(18) 

(19) 

s"c2) = 2(K - 1) T2/T2,  

s2(Ka4) = 2(Ms/K2 - 1) 74/T4, 

where the subscripts refer to the order of the moment (recall that M4 = K ) .  
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Two problems arise in connexion with equations such as (18) and (1 9) and their 
counterparts for other moments. First, the integral scales have to be estimated; 
second, it is unlikely that a priori information on the values of high order 
moments (e.g. M8) is available. As far as the integral scales are concerned, the 
problem is complicated by the fact that the basic signal s, being a derivative, 
formally has a zero integral scale itself (Tennekes & Lumley 1972,s 6.4). However, 
there is no reason to believe that powers of s have zero integral scales (Lumley 
1970, 53.13). We can estimate r2 by assuming that the observed spectrum of s2 
(Wyngaard & Pao 1972) becomes flat as K~ + 0 and taking the data at the 
smallest K~ to be representative of the value at  K~ = 0. This is a familiar, if for- 
mally incorrect, integral-scale measurement technique (Comte-Bellot & Corrsin 
1971) which in this case, because of the peculiar spectral shape, probably only 
gives order-of-magnitude estimates. In  this way we obtain r2 = 107/U, where 7 
is the Kolmogorov microscale and U is the mean velocity seen by the hot wire. 
A pseudo-integral scale for s itself may be estimated from the height of the 
maximum in its power spectrum (Lumley 1970, 33.13); that maximum is about 
3s5q (see, for example, Wyngaard & Pao 1972), corresponding to an integral 
time scale of 3(n-y/2U) z 5y/U. Even more crudely, we can argue that the 
integral length scale of s should be about 107, because its power spectrum peaks 
at about ~~7 = 0.1 (see Gibson et al. 1970; K~ is the streamwise component of the 
wavenumber vector). It appears, therefore, that a conservative estimate for r2 
would be lOr/U (for a similar discussion, see Lumley 1970, 53.11). Estimates for 
r4, r6, .. . can be obtained from measured spectra of s4, s6, . . . ; the laboratory data 
of Friehe, Van Atta & Gibson (1971) suggest that r2, 74 and r6 all are of order 
lOq/U. This result is not surprising: the spectra of s2, s4 and s6 are quite similar, 
with relatively small slopes in the inertial subrange and nearly identical band- 
widths. The integral scales of powers of s are thus comparable to that of s itself. 

For the Kansas data, K g 40, but no data on i& are available (even the extra- 
polation in figure 4 barely reaches the maximum of the distribution of M,). From 
figure 4 an (extremely crude) estimate of M, may be obtained, however; the value 
is probably on the order of 2 x 10'. With these numbers, we can estimate the inte- 
gration times T2 and T4for any required accuracy. For example, if q = lO-3m and 
U = 5 m/s, the time required to obtain the variance with 1 yo accuracy is about 
1600s and the time required to obtain the kurtosis with 10 % accuracy is about 
5000 s. One-hour runs were employed in the Kansas expedition, suggesting that 
the reported kurtosis values (Wyngaard & Tennekes 1970) should be fairly 
accurate. Note, however, that it would take 5 x lo5 s (140h!) to obtain K with 
I yo accuracy. 

An estimate of the time needed to obtain reasonably accurate data on M6 
would require information on M12; the distribution of the latter extends to such 
Iarge values of x that the extrapolation (5) cannot be trusted at  all. It is, never- 
theless, possible to make an alternative estimate of the required sampling time on 
the basis of figures 3 and 4. 

We shall assume that the sampling rate used to obtain the probability dis- 
tribution is chosen such that adjacent samples are approximately independent. 
This requires a sampling interval equal to twice the integral scale (Tennekes & 
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Lumley 1972, $6.4)) i.e. approximately 207/U. If the number of samples in any 
register r is denoted by n(r)  and if the total number of samples is N ,  we obtain 

n(r)  = NP,Ax, (20) 

assuming that n(r)  9 1 and that Ax is small enough. For simplicity, let us assume 
that we need at  least one count in the last register (the one corresponding to 
x = m). On this basis, we obtain 

N 2 l/,&(m)Ax. 

For example, in order to determine the kurtosis of the Kansas data ( K  = 40) 
with an accuracy of the order of l o % ,  we need m 2 20 (see figure 1))  so that 
P*(m) 2 p*(m) < 3 x 10-6 (figure 3). The effective window width employed was 
Ax = 0.12; consequently, the minimum value of N required is approximately 
3 x lo6. The actual number of counts used was 2.3 x lo7, but the samples were not 
independent: the sampling interval was about 3 x s, whereas it should have 
been about 27 = 207/U = 4 x s (assuming 7 = m, U = 5 m/s). Roughly 
speaking, then, the actual samples were equivalent to about 3 x lo6 independent 
ones, asrequired. 

In order to measure the sixth moment with some accuracy, we would need at 
least m 2 40 (see figure 4), with a corresponding P*(m) < 3 x (see figure 3). 
At an ‘optimum’ window width Ax = 0.2 (corresponding to Q = 10; recall the 
discussion following (15)) this yields N = 2 x lo8. The corresponding sampling 
time, using independent samples at  intervals of 4 x s, would be 7-4 x lo5 S, 

or approximately 200 h! Even if our integral scale estimates are 10 times too large 
(that is, if independent samples can be obtained at  10 times the rate we estimated) 
it would take 20 h, still being out of practical reach. 

5. Conclusions 
From the point of view of an experimenter, the moment problem of the small- 

scale structure of turbulence is a major challenge; significant improvements will 
have to be made in the design and execution of experiments before reliable data 
on moments beyond the fourth can be obtained for velocity derivatives in geo- 
physical turbulence. The dynamic range of most tape recorders is marginal as 
far as these experiments are concerned, and it appears necessary to employ on- 
line, real-time digitizing in order to have a chance of increasing the dynamic 
range to the required number of standard deviations. Even so, the integration 
times needed to obtain moments beyond the kurtosis remains extremely large, 
well beyond the range of time intervals over which reasonably stationary con- 
ditions may be expected (atmospheric turbulence records much longer than an 
hour or so are likely to exhibit trends). It will be necessary to obtain ensemble 
averages, repeating the same experiment many times until sufficient statistical 
stability in the extreme tails of the probability distribution is achieved. This 
problem is quite similar to that of aircraft in clear-air turbulence: it requires 
thousands of hours of recording time before one can determine the probability of 
encountering a severe gust with any certainty. 
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